1、 设备参数与结构
风机型号 W12g12.5,叶轮直径 D 2 =1 250mm,高转速n=2 550r/min,设计性能参数为:风量 Q=235 440m 3 /h,全压 p=11 000Pa,进口温度t=150℃,进口密度ρ=0.763kg/m 3 ,输送介质为转炉煤气(干法除尘)。
风机结构和试验台布置见图1。该风机主要由转子和定子组成,转子包括主轴、叶轮、联轴器、固定端轴承(以下简称轴承1)和非固定端轴承(以下简称轴承2),定子包括进风箱(含进口导叶和轴承I的底座)、机壳(含后导叶和轴承II的底座)、扩压器和钢制风机底座。显然,与一般离心风机结构不同的是,轴承I的底座和轴承II的底座均未与混凝土基础直接接触。为完成运转试验过程,由增速机通过长度为3.3m的加长型空心轴将两台直流电动机串联。
2 、振动特点
根据转炉各冶炼阶段(准备、预热/降罩、吹炼、补吹、出钢、清理炉口、加废钢兑铁)的不同,该风机的运行工况频繁变换。因此,不仅要满足各冶炼阶段所需性能参数以及防泄漏、防爆的要求,还要满足35~38min内低、高速频繁调速运行的要求。所以,制造厂需对其进行严格的出厂运行实验。然而,该风机在运行实验中却发生了严重的振动问题,振动数据见表1,尤其进行的所有实验转速还远达不到高设计转速2 550r/min,显然,这个振动问题的分析和处理十分具有挑战性
由表1可分析其振动特点如下:
1)风机振动与转速关联性强,转速越高,振动越大;
2)风机升/降速过程中,在同一转速的振动特性相同,具有重复性;
3)风机轴承 I 与轴承 II 振动相差不大,即振动数量级相同;在2 320r/min以上,风机轴承I与轴承II相比,前者垂直方向振动小于后者,而水平方向振动大于后者,显示二者在垂直和水平方向的刚度存在差异;
4)增速机振动与转速关联性强,在输出轴反转2 400r/min时达到10.0mm/s,由此增加了振动问题的复杂性;
5)受电机功率限制,高转速只有达到正转2 349r/min和反转2 400r/min,不可能实施冲转实验;
6)风机高线速度为 167m/s,但在试验中无法实施,需由次高转速判断高转速时的振动特性。
3、 振动检测分析
风机主要有动不平衡、不对中、轴承故障、转子零部件部分松动或脱落、转子转速接近临界转速、共振等八大类振动问题 ,但具体表现在不同的风机结构上,其振动征兆会有所区别,尤其是振动由多种因素共同作用时,则大大增加了诊断和分析的复杂性。对于本例,不排除为多种因素的复合作用,为此,在振动频谱分析、转子模态测试等方面都进行了相应的分析工作。
本例采用的测试仪器和传感器有八通道数据采集箱、四通道信号调理仪、激振器、功率放大器、速度传感器、加速度传感器、力锤及力传感器;所应用的软件有SsCras信号与系统分析、SinSwt 正弦扫频动力特性及 MaCras 机械及结构模态分析。
3.1 增速机振动
首先解决增速机振动问题。根据经验,对增速机滑动轴承重新浇瓦、加工,同时将增速机高、低速端联轴器与其齿轮轴重新进行动平衡校正。增速机经过维修后其高速输出端带负荷运行到2 400r/min时振动速度仅为2.5mm/s,表明增速机振动已经排除。但在后续的风机试验中(风机振动见表1),则说明风机振动此时已经与增速机无关联。
3.2 振动频谱分析
各试验转速下的振动频率分析见表2。正转2 349r/min时的振动频谱见图2(其余转速的振动频谱略去),其中:图2(a)、2(b)为轴承I的垂直、水平振动频谱,图2(c)、2(d)为轴承II的垂直、水平振动频谱。由此分析:升速2 000r/min以后振动明显增加,频谱以工频分量为主,基本没有2倍频分量且基础振动不大,可以排除轴系对中及基础安装不牢固的可能,但提高转子动平衡品质等级对解决问题是有利的;再升高转子速度后,出现幅值较低的2倍频、3倍频和4倍频分量,不排除叶轮内焊渣、氧化皮或其它异物未清理干净的因素。
3.3 检测共振问题
由于无论整机或单独吊出转子组试验,上述振动特性基本一致,所以怀疑存在共振的可能。为此,采用了两种测试方法互为补充。